Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 123: 155271, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103317

RESUMO

BACKGROUND: Hypercholesterolemia is widely implicated in the etiology of coronary heart disease, stroke, and dementia. Evidence suggests that chlorogenic acid (CA) reduces the risk of cardiovascular disease. PURPOSE: The current study aims to explore the underlying molecular mechanism of CA in lowering cholesterol based on pregnane X receptor (PXR) and sterol regulatory element-binding protein 2 (SREBP2) regulatory pathways and their interactions with heat shock protein 90 (HSP90). METHODS: A hypercholesterolemic mouse model, HepG2 and Caco2 cell models, metabolomics analysis, and co-immunoprecipitation (COIP) were used to study the mechanism of CA lowering cholesterol. RESULTS: Treatment of the hypercholesterolemic mice with CA for 12 weeks significantly reduced body weight, blood lipid, hepatic lipid accumulation, and increased lipid excretion. The nuclear aggregation of PXR and SREBP2 was inhibited simultaneously. In addition, the expression of downstream target genes, including Niemann-pick C1-like 1 (NPC1L1) and 3­hydroxy-3-methylglutaryl-CoA reductase (HMGCR), was downregulated after CA administration. Furthermore, in HepG2 and Caco2 cell models, CA reduced intracellular cholesterol levels by inhibiting the nuclear translocation of PXR and SREBP2 and the expression of NPC1L1 and HMGCR. SREBP2 interacts with PXR through HSP90, and CA reduces the binding stability of SREBP2 and HSP90 and enhances the binding of PXR and HSP90, thus reducing the nuclear accumulation of SREBP2 and PXR simultaneously. Moreover, CA promoted the phosphorylation of AMP-activated protein kinase (AMPK) and its binding to SREBP2. This was not conducive to the binding of HSP90 and SREBP2 but enhanced the binding of HSP90 and PXR, thereby inhibiting the nuclear translocation of SREBP2 and PXR and reducing intracellular cholesterol levels. However, no noticeable direct binding between AMPK and PXR was observed. CONCLUSION: CA downregulates NPC1L1 and HMGCR expression by acting on the AMPK/SREBP2 direct pathway and the AMPK/SREBP2/HSP90/PXR indirect pathway, thus retaining cholesterol homeostasis.


Assuntos
Ácido Clorogênico , Hipercolesterolemia , Humanos , Animais , Camundongos , Ácido Clorogênico/farmacologia , Receptor de Pregnano X/metabolismo , Oxirredutases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Células CACO-2 , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Colesterol/metabolismo , Homeostase , Transdução de Sinais , Proteínas de Membrana Transportadoras/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo
2.
Biochem Pharmacol ; 213: 115592, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196680

RESUMO

Ferroptosis is an autophagy-dependent cell death associated with iron accumulation and lipid peroxidation, which plays a crucial part in anticancer activity. Sirtuin 3 (SIRT3) positively regulates autophagy by phosphorylation of activated protein kinase (AMPK). However, whether SIRT3-mediated autophagy can inhibit the cystine/glutamate antiporter (system Xc-) activity by inducing the formation of a BECN1-SLC7A11 complex and consequently promote induction of ferroptosis is unknown. Using both in vitro and in vivo models, we revealed that combination treatment with erastin and TGF-ß1 decreased the expression of epithelial-mesenchymal transition-related markers and inhibited the invasion and metastasis of breast cancer. Furthermore, TGF-ß1 promoted erastin-induced ferroptosis-related indicators in MCF-7 cells and tumor-bearing nude mice models. Interestingly, the expression of SIRT3, p-AMPK, and autophagy-related markers were significantly elevated after co-treatment with erastin and TGF-ß1, suggesting that combination treatment of erastin and TGF-ß1 mediated autophagy by the SIRT3/AMPK signaling pathway. In addition, erastin-induced BECN1-SLC7A11 complexes were more abundant after co-treatment with TGF-ß1. This effect was inhibited by the autophagy inhibitor 3-methyladenine or siSIRT3, further revealing that combination treatment of erastin and TGF-ß1 mediated autophagy-dependent ferroptosis by inducing the formation of BECN1-SLC7A11 complexes. Our results agreed with the concept that BECN1 directly binds to SLC7A11 to inhibit system Xc- activity. In summary, our studies confirmed that SIRT3-mediated autophagy is conducive to ferroptosis-mediated anticancer activity by inducing the formation of BECN1-SLC7A11 complexes, which is a potential therapeutic approach for treating breast cancer.


Assuntos
Ferroptose , Neoplasias , Sirtuína 3 , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Apoptose , Autofagia , Camundongos Nus , Sirtuína 3/genética , Fator de Crescimento Transformador beta1/farmacologia , Humanos
3.
J Ethnopharmacol ; 310: 116398, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36948264

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cytochrome P3A4 (CYP3A4) is a crucial drug-metabolizing enzyme, and its expression is regulated by the pregnane X receptor (PXR), constitutive androstane receptor (CAR), steroid receptor coactivator 1 (SRC-1), and acetyltransferase P300. Panaxytriol is a naturally derived active substance extracted from the roots of Panax ginseng C. A. Mey. which is widely used clinically. Our previous studies have shown that panaxytriol induces CYP3A4 expression through PXR activation, which is antagonized by high CAR expression. However, the underlying mechanism remains unclear. AIM OF THE STUDY: This study aimed to investigate the mechanism of panaxytriol in inducing CYP3A4 expression via interactions between nuclear regulators and DNA response elements. MATERIALS AND METHODS: Immunoprecipitation technique was used to assess the binding levels of PXR and CAR with the coactivators SRC-1 and P300 in HepG2 and Huh-7 cells. Furthermore, chromatin immunoprecipitation assay was used to investigate the PXR and CAR interaction with the CYP3A4 promoter response element ER-6/DR-3. RESULTS: The binding of PXR to SRC-1, P300, and the response elements ER-6 and DR-3 was improved with an increase in panaxytriol concentration (10-80 µM), and the binding affinity was further enhanced upon CAR silencing. The binding of CAR to SRC-1 and the response elements ER-6 and DR-3 was significantly higher at 80 µM panaxytriol, whereas no significant binding was observed between CAR and P300. CONCLUSION: Panaxytriol promoted the recruitment of PXR to SRC-1 and P300, binding to ER-6 and DR-3, and upregulating CYP3A4 expression. Furthermore, an interactive dialogue regulatory mechanism between PXR and CAR was observed.


Assuntos
Receptores de Esteroides , Humanos , Receptores de Esteroides/genética , Receptores Citoplasmáticos e Nucleares/genética , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Células Hep G2 , Elementos de Resposta , DNA
4.
J Ethnopharmacol ; 308: 116278, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36813246

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shengmai formula (SMF) is a well-known Chinese herbal compound preparation, which is utilized extensively for the treatment of myocardial ischemia, arrhythmia and other life-threatening conditions. Our previous researches have shown that some of the active ingredients in SMF can interact with organic anion transport polypeptide 1B1 (OATP1B1), breast cancer resistance protein (BCRP) and organic anion transporter 1 (OAT1), etc. Organic cation transporter 2 (OCT2) is a highly expressed uptake transporter in the kidney, and its interaction with the major active components in SMF remains unclear. AIM OF THE STUDY: We purposed to explore OCT2-mediated interactions and compatibility mechanisms of the main active compounds in SMF. MATERIALS AND METHODS: Fifteen active ingredients of SMF, including ginsenoside Rb1, Rd, Re, Rg1, Rf, Ro and Rc, methylophiopogonanone A and B, ophiopogonin D and D', schizandrin A and B, schizandrol A and B, were selected to investigate OCT2-mediated interactions in Madin-Darby cacine kidney (MDCK) cells stably expressing OCT2. RESULTS: Among the above 15 main active components, only ginsenosides Rd, Re and schizandrin B could significantly inhibit the uptake of 4-(4-(dimethylamino)styryl)-N-methyl pyridiniumiodide (ASP+), a classical substrate of OCT2. Ginsenoside Rb1 and methylophiopogonanone A can be transported by MDCK-OCT2 cells, and their uptake was significantly reduced when OCT2 inhibitor decynium-22 was added. Ginsenoside Rd could remarkably reduce the uptake of methylophiopogonanone A and ginsenoside Rb1 by OCT2, ginsenoside Re only decreased the uptake of ginsenoside Rb1, while schizandrin B had no effect on the uptake of both. CONCLUSIONS: OCT2 mediates the interaction of the major active components in SMF. Ginsenosides Rd, Re and schizandrin B are the potential inhibitors of OCT2, while ginsenosides Rb1 and methylophiopogonanone A are the potential substrates of OCT2. There is an OCT2-mediated compatibility mechanism among these active ingredients of SMF.


Assuntos
Ginsenosídeos , Animais , Cães , Ginsenosídeos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportador 2 de Cátion Orgânico , Células Madin Darby de Rim Canino , Proteínas de Neoplasias/metabolismo
5.
Phytother Res ; 37(1): 211-230, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36086852

RESUMO

Resveratrol (Resv) has antitumorigenic and antimetastatic activities; however, the molecular mechanisms underlying the inhibitory effects of Resv on the invasion and metastasis of breast cancer cells are still a subject of debate. In our study, we demonstrated that Resv inhibited tumor cell proliferation and tumor growth. It also suppressed invasion and pulmonary metastasis of breast cancer by reversing the transforming growth factor beta 1 (TGF-ß1)-mediated EMT process. Meanwhile, the anticarcinogenic effects of Resv were abolished by the autophagy blocker 3-methyladenine (3-MA) or Beclin 1 small interfering RNA. Moreover, Resv upregulated autophagy-related genes and protein levels and induced the formation of autophagosomes in 4T1 breast cancer cells and xenograft mice, suggesting that autophagy was involved in the anticarcinogenic activities of Resv in both models. In addition, Resv-induced autophagy by increasing the expression of SIRT3 and phosphorylated AMPK. SIRT3 knockdown reduced AMPK phosphorylation and autophagy-related proteins levels, and suppressed the anticancer effects of Resv, demonstrating that the inhibitory effects of Resv on tumor progression were mediated via the SIRT3/AMPK/autophagy pathway. Taken together, our study provided novel insight into the anticancer effects of Resv and revealed that targeting the SIRT3/AMPK/autophagy pathway can serve as a new therapeutic target against breast cancer.


Assuntos
Neoplasias , Sirtuína 3 , Humanos , Animais , Camundongos , Resveratrol/farmacologia , Proteínas Quinases Ativadas por AMP , Fator de Crescimento Transformador beta1/metabolismo , Autofagia , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular
6.
Pharmacol Res ; 187: 106563, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410674

RESUMO

Ferroptosis has been implicated in the pathophysiological progression of a variety of diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator of cellular antioxidant response and can counteract ferroptosis by inducing autophagy and targeting genes involved in iron metabolism and glutathione (GSH) synthesis/metabolism. This study investigated how Nrf2 and autophagy interact to prevent ferroptosis in acute liver injury under sulforaphane (SFN) intervention. The results showed that SFN could activate Nrf2 signaling pathway and its downstream target genes, promote cell autophagy, and then combat ferroptosis to alleviate liver injury. After inhibiting Nrf2, the autophagy activated by SFN almost disappeared, and the anti-ferroptosis effect was greatly weakened. After inhibiting autophagy, SFN can still activate Nrf2 and its downstream target gene, but solute carrier family 7 member 11 (SLC7A11) membrane transfer and its cystine transport ability are significantly weakened, thus ultimately attenuating the anti-ferroptosis effect of SFN. Further studies showed that Nrf2-dependent autophagy activation disrupted SLC7A11 binding to S93-phosphorylated coiled-coil myosin-like BCL2-interacting protein (BECN1) and increased SLC7A11 membrane transfer to combat ferroptosis. In conclusion, Nrf2-dependent autophagy activation is essential for promoting SLC7A11 membrane localization to inhibit ferroptosis. Activation of Nrf2 not only upregulates the expression of SLC7A11, glutathione peroxidase 4 (GPX-4) and autophagy-related proteins, but also destroys the binding of SLC7A11 and BECN1 by inducing autophagy, thereby promoting SLC7A11 membrane transfer and GSH synthesis, and finally suppressing ferroptosis. However, inhibition of autophagy had no significant effect on the expression of Nrf2 and downstream genes during SFN anti-liver injury intervention.


Assuntos
Autofagia , Ferroptose , Falência Hepática Aguda , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Humanos , Animais , Ratos
7.
Phytomedicine ; 108: 154529, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343550

RESUMO

BACKGROUND: Previous studies have shown that the anti-cholestatic effect of oleanolic acid (OA) is associated with FXR and NRF2. However, how the two signaling pathways cooperate to regulate the anti-cholestatic effect of OA remains unclear. PURPOSE: This study aimed to further demonstrate the effect of OA on alpha-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury and the interaction mechanism between NRF2 and FXR signaling pathways in maintaining bile acid homeostasis. METHODS: Gene knockout animals and cell models, metabolomics analysis, and co-immunoprecipitation were used to investigate the mechanism of OA against cholestatic liver injury. RESULTS: The effect of OA against ANIT-induced liver injury in rats was dramatically reduced after Nrf2 gene knockdown. With the silencing of Fxr, the hepatoprotective effect of OA was weakened, but it still effectively alleviated cholestatic liver injury in rats. In L02 cells, OA can up-regulate the levels of NRF2, FXR, BSEP and UGT1A1, and reduce the expression of CYP7A1. Silencing of NRF2 or FXR significantly attenuated the protective effect of OA on ANIT-induced L02 cell injury and its regulation on downstream target genes, and the influence of NRF2 gene silencing on OA appeared to be greater. The NRF2 activator sulforaphane, and the FXR activator GW4064 both remarkably promoted NRF2 binding to P300 and FXR to RXRα, but reduced ß-catenin binding to P300 and ß-catenin binding to FXR. CONCLUSION: The effect of OA on cholestatic liver injury is closely related to the simultaneous activation of NRF2 and FXR dual signaling pathways, in which NRF2 signaling pathway plays a more important role. The dual signaling pathways of NRF2 and FXR cooperatively regulate bile acid metabolic homeostasis through the interaction mechanism with ß-catenin/P300.


Assuntos
Colestase , Ácido Oleanólico , Animais , Ratos , beta Catenina/metabolismo , Ácidos e Sais Biliares/metabolismo , Colestase/tratamento farmacológico , Colestase/induzido quimicamente , Fígado , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais
8.
J Ethnopharmacol ; 296: 115515, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35777609

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shengmai formula (SMF) is a classical traditional Chinese medicine prescription, which is widely used in the treatment of cardiovascular and cerebrovascular diseases. Our previous studies have demonstrated that some components in SMF can interact with each other through breast cancer resistance protein, sodium taurocholate co-transporting polypeptide, organic anion transporting polypeptide 1B1 and 1B3. Organic anion transporter 1 (OAT1) is highly expressed in kidney, mediating the elimination of many endogenous and exogenous substances. However, the interaction between the main active components in SMF and OAT1 is not clear. AIM OF THE STUDY: This study aimed to investigate the interactions of the major bioactive components in SMF mediated by OAT1. MATERIALS AND METHODS: Four main fractions, namely, ginseng total saponins (GTS), ophiopogon total saponins (OTS), ophiopogon total flavonoids (OTF), fructus schisandrae total lignans (STL), and 12 active components, namely, ginsenoside Rg1, Re, Rd and Rb1, ophiopogonin D and D', methylophiopogonanone A and B, schizandrol A and B, schizandrin A and B, were selected to explore the interactions of SMF with OAT1 using cell and rat models. RESULTS: The above four main fractions in SMF all exhibited inhibitory effects on the uptake of 6-carboxyfluorescein (6-CF), a classic substrate of OAT1. Among the 12 main effective components, only ginsenoside Re, Rd, and methylophiopogonanone A showed inhibition of 6-CF uptake. Additionally, we found that schizandrin B was transported by HEK293-OAT1 cells, and schizandrin B uptake was markedly inhibited by GTS, OTS, OTF, ginsenoside Re, Rd, and methylophiopogonanone A. In rats, ginsenoside Re, Rd, and methylophiopogonanone A jointly increased the AUC(0-t), AUC(0-∞), and Cmax of schizandrin B, but they decreased its clearance in plasma and excretion in urine. CONCLUSIONS: Ginsenoside Re, Rd, and methylophiopogonanone A were the potential inhibitors of OAT1, and may interact with some drugs serving as OAT1 substrates clinically. Schizandrin B was a potential OAT1 substrate, and its OAT1-mediated transport was inhibited by ginsenoside Re, Rd, and methylophiopogonanone A. OAT1-mediated interactions of the main active components in SMF can be regarded as one of the important compatibility mechanisms of traditional Chinese medicine preparations.


Assuntos
Medicamentos de Ervas Chinesas , Ophiopogon , Transportadores de Ânions Orgânicos , Panax , Saponinas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Células HEK293 , Humanos , Proteínas de Neoplasias , Panax/química , Ratos
9.
Phytomedicine ; 102: 154173, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35605478

RESUMO

BACKGROUND: Cholestasis is a clinical syndrome with high incidence and few effective treatments. Oleanolic acid (OA) is a triterpenoid compound with anti-cholestatic effects. Studies using bile duct ligation or lithocholic acid modeling have shown that the alleviating effect of OA on cholerosis is related to the regulation of nuclear factor erythroid 2 related factor (Nrf2) or farnesoid X receptor (Fxr). PURPOSE: This study aims to investigate the underlying mechanism of OA against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury based on Nrf2 and Fxr dual signaling pathways. METHODS: The ANIT-induced rats model was used with or without OA treatment. Serum biochemical indexes, liver histopathological changes and glutathione level were examined. Bile acids (BAs) targeted metabolomics based on UHPLC-MS/MS were performed. siRNA, RT-qPCR and western blot analysis were used to prove the role of Fxr and Nrf2 pathway in OA's anti-cholestatic liver injury in vivo and in vitro. RESULTS: OA significantly alleviated ANIT-induced liver injury in rats, reduced primary bile acids, accelerated metabolism of BAs and reduced the intrahepatic accumulation of BAs. The expressions of bile salt export pump (Bsep), Na+-taurocholic cotransport polypeptide (Ntcp), UDP-glucuronyl transferase 1a1 (Ugt1a1) and Fxr in rat liver were markedly up-regulated, the activation of Nrf2 was promoted, and the expression of cholesterol 7α-hydroxylase (Cyp7a1) was decreased after OA treatment. Moreover, Fxr or Nrf2 silencing attenuated the regulation of OA on BAs homeostasis related transporters and enzymes in rat primary hepatocytes. CONCLUSION: OA may regulate BAs-related transporters and metabolic enzymes by activating Fxr and Nrf2 pathways, thus alleviating the cholestatic liver injury induced by ANIT.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Ácido Oleanólico , Animais , Ratos , 1-Naftilisotiocianato/toxicidade , Ácidos e Sais Biliares/metabolismo , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Homeostase , Fígado , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Espectrometria de Massas em Tandem , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
10.
Phytomedicine ; 101: 154097, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35417848

RESUMO

BACKGROUND: Cytochrome P450 3A4 (CYP3A4) is one of the most important drug-metabolizing enzymes in the human body, mainly existing in the liver, small intestine, and kidney. Panaxytriol is one of the key active components in red ginseng and Shenmai injection. Our previous study demonstrated that panaxytriol regulates CYP3A4 expression mainly by activating pregnancy X receptor (PXR). At a high concentration of panaxytriol (80 µM), the constitutive androstane receptor (CAR) is also involved in the upregulation of CYP3A4. PURPOSE: This study investigated how the cofactors heat shock protein 90 alpha (HSP90α) and retinoid X receptor alpha (RXRα) interact with PXR and CAR to participate in the regulation of CYP3A4 by panaxytriol from the perspective of the PXR and CAR interaction. METHODS: The mRNA and protein expressions of PXR, CAR, CYP3A4, RXRα, and HSP90α in HepG2 cells and Huh-7 cells were detected by quantitative PCR and western blot analysis, respectively. The binding levels of PXR and CAR to RXRα and HSP90α were determined by co-immunoprecipitation analysis. The nuclear translocation of PXR and RXRα into HepG2 cells and human (hCAR)-silenced HepG2 cells were measured by immunofluorescence. RESULTS: In HepG2 cells and Huh-7 cells, panaxytriol (10-80 µM) upregulated CYP3A4 expression in a concentration-dependent manner by decreasing PXR binding to HSP90α and increasing PXR binding to RXRα. When hCAR was silenced, panaxytriol further enhanced CYP3A4 expression by strengthening PXR binding to RXRα, but it had no significant effect on the binding level of PXR and HSP90α. Additionally, at the high concentration of 80 µM panaxytriol, CAR binding to HSP90α was weakened while binding to RXRα was enhanced. CONCLUSION: Panaxytriol can upregulate CYP3A4 expression by promoting PXR dissociation from HSP90α and enhancing PXR binding to RXRα in HepG2 cells and Huh-7 cells. At high concentrations of panaxytriol, CAR also participates in the induction of CYP3A4 through a similar mechanism. However, in general, CAR antagonizes PXR binding to RXRα, thereby attenuating the upregulation of CYP3A4 by panaxytriol.


Assuntos
Citocromo P-450 CYP3A , Receptores de Esteroides , Receptor Constitutivo de Androstano , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Enedi-Inos , Álcoois Graxos , Hepatócitos , Humanos , Receptor de Pregnano X/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/genética
11.
J Clin Lab Anal ; 35(10): e23956, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34492742

RESUMO

BACKGROUND: Early diagnosis of cancer is still the most effective method to increase survival and therapeutically effective patient management. Accumulating studies had exploited exosomes as an indicator for the diagnosis and prognosis of cancer. In addition to exosomes, exosome-derived miRs are widely investigated as a novel biomarker for diagnosis in cancer patients. The aim of this study was to clarify the diagnostic value of ex-miR-21 in cancer. METHODS: Databases were searched for eligible studies up to June, 2021. Studies included in this meta-analysis were reviewed and selected independently by two authors. The data of sensitivity, specificity, diagnostic odds ratio (DOR), and summary receiver operating characteristic curves (SROC) of exosomal miR-21 as a diagnostic biomarker were extracted and calculated. Quality assessment was conducted by using the QUADAS-2 tool. RESULTS: A total of 26 studies were included in the systematic analysis and meta-analysis. The pooled results of sensitivity, specificity, PLR/NLR, DOR, and area under the curve were 76% (95%CI, 0.70-0.81), 82% (0.77-0.87), 4.3 (3.1-6.0), 0.29 (0.22-0.38), 15 (8-26), and 0.86 (0.83-0.89), respectively. Sensitivity analysis and Deeks' funnel plot indicated that results remained unchanged and had no publication bias. For the subgroup analysis, it was showed that ex-miR-21 had a superior diagnostic accuracy on identifying PC. CONCLUSION: Exosomal microRNA-21 can serve as an effective and widely used diagnostic biomarker for cancer, especially in PC. The using field of exosomes and exosome-derived miR can further extend the prognosis and therapeutic management. Standardized isolation of exosomes and miRNA-21 should be developed.


Assuntos
MicroRNAs , Neoplasias , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Sensibilidade e Especificidade
12.
Phytomedicine ; 92: 153726, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536821

RESUMO

BACKGROUND: Isomeric ursolic acid (UA) and oleanolic acid (OA) compounds have recently garnered great attention due to their biological effects. Previously, it had been shown that UA and OA can exert important pharmacological action via the protein kinase C (PKC) and nuclear factor-κB (NF-κB) signaling, and that they can induce the expression of UDP-glucuronosyltransferase 1A1 (UGT1A1) in HepG2 cells. This study aims to investigate the role of PKC/NF-κB signaling in regulating the expression of UGT1A1 and examine how UA and OA induce UGT1A1 based on this signaling pathway. METHODS: HepG2 cells, hp65-overexpressed HepG2 cell and lentivirus-hp65-shRNA silenced HepG2 cells were stimulated with PKC/NF-κB specific agonists and inhibitors for 24 h in the presence or absence of UA and OA. The expression of UGT1A1, PKC, and NF-κB were determined by qRT-PCR, western blot, and dual-luciferase reporter gene assays. RESULTS: PKC/NF-κB activation downregulates UGT1A1 expression. This effect is countered by UA and OA treatment. Phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS), the agonists of PKC and NF-κB signaling, respectively, significantly inhibit hp65-mediated UGT1A1 luciferase activity. UA, OA, and the PKC/NF-κB inhibitors suppress this effect. PMA and LPS do not affect UGT1A1 activity in p65-silenced HepG2 cells; however, UA and OA mildly influence UGT1A1 expression in these cells. CONCLUSION: The activation of PKC/NF-κB signaling can significantly downregulate UGT1A1 expression. By inhibiting the PKC/NF-κB signaling pathway, UA and OA promote UGT1A1 expression in HepG2 cells.


Assuntos
Ácido Oleanólico , Glucuronosiltransferase , NF-kappa B/metabolismo , Ácido Oleanólico/farmacologia , Proteína Quinase C/metabolismo , Transdução de Sinais , Triterpenos , Regulação para Cima
13.
Biochem Pharmacol ; 188: 114527, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741330

RESUMO

Cancer-associated fibroblasts (CAFs) play an important role in the initiation, metastasis, and invasion of breast cancer. However, whether autophagy acts as a tumor promotion mechanism by inducing epithelial-mesenchymal transition (EMT) is still controversial and remains undefined at the mechanistic levels. In this study, we investigated whether autophagy or FAP-α is required for the invasion, pulmonary metastasis and EMT of breast cancer cells and underlying mechanism. We employed an in vitro model of NIH3T3 fibroblasts treated with H2O2 and confirmed that TGF-ß1 could convert fibroblasts into CAFs through autophagy under oxidative stress in the tumor microenvironment. Modulation of autophagy by rapamycin, 3-methyladenine or ATG-5 knockdown regulated the expression of CAFs markers, suggesting a role of autophagy in the tumor promotion mechanism of TGF-ß1-induced CAFs activation. Furthermore, we established an indirect co-culture model and a mixed xenograft as a corresponding in vivo model. We demonstrated that TGF-ß1-activated CAFs promote tumor invasion, pulmonary metastasis and EMT, which act through autophagy and overexpression of FAP-α in both models, while autophagy inhibitor 3-methyladenine blocked these effects induced by TGF-ß1-activated CAFs. Moreover, the co-localization of LC3ß and EMT marker vimentin in mixed xenograft also revealed that TGF-ß1-activated CAFs promote tumor growth, pulmonary metastasis, and EMT program partly through autophagy. In addition, knockdown of FAP-α resulted in reversed EMT and abolished tumor invasion and pulmonary metastasis induced by TGF-ß1-activated CAFs. Taken together, we conclude that both autophagy and FAP-α are required for breast cancer cell invasion and metastasis. Targeting autophagy or FAP-α rather than both can serve as a potential approach to improve the prognosis for human breast cancer.


Assuntos
Autofagia/fisiologia , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Endopeptidases/biossíntese , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Membrana/biossíntese , Fator de Crescimento Transformador beta1/farmacologia , Animais , Autofagia/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endopeptidases/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Invasividade Neoplásica/patologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
Biomed Pharmacother ; 133: 110939, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33232930

RESUMO

Shengmai Formula (SMF) is one of the traditional Chinese medicine representative formulas and is widely used for the treatment of cardio- and cerebrovascular disease. Previous studies demonstrated that the major effective ingredients in SMF can interact with each other based on some uptake transporters. However, the role of the efflux transporter breast cancer resistance protein (BCRP) in these interactions involving SMF remains unclear. The purpose of this study was to investigate the interactions of the major active components of SMF with BCRP and the compatibility mechanism of these complex components in SMF based on BCRP. We selected 4 main fractions, including ginseng total saponins (GTS), ophiopogon total saponins (OTS), ophiopogon total flavonoids (OTF), and fructus schisandrae total lignans (STL), and 12 bioactive components, including ginsenosides Re, Rd, Rb1, and Rg1, ophiopogonins D and D', methylophiopogonanones A and B, schizandrins A and B, and schizandrols A and B to explore the interactions of SMF with BCRP in LLC-PK1 and LLC-PK1/BCRP cells and BCRP membrane vesicles. The results showed that ginsenosides Re and Rg1, methylophiopogonanone B, and schizandrin A can be transported by BCRP into LLC-PK1/BCRP cells. Schisandrol B exhibited a markedly inhibitory effect on the transport function of BCRP and can significantly inhibit the uptake of methylophiopogonanone B and schizandrin A into LLC-PK1/BCRP cells. In "Inside-Out" BCRP membrane vesicles, BCRP mediated the transport of ginsenosides Re and Rg1, methylophiopogonanone B, and schizandrin A, with Km values of 111.9 ±â€¯31.26 µM, 82.01 ±â€¯16.72 µM, 57.06 ±â€¯8.789 µM, and 37.19 ±â€¯6.512 µM, respectively. GTS, STL, ginsenosides Rd and Rb1, and schisandrol B were potent inhibitors of BCRP and showed different degrees of inhibition on the transport of ginsenosides Re and Rg1, methylophiopogonanone B, and schizandrin A via BCRP. In conclusion, GTS, STL, ginsenosides Rd and Rb1, and schizandrol B are potential inhibitors of BCRP. Ginsenosides Re and Rg1, methylophiopogonanone B, and schizandrin A are potential substrates of BCRP, and their transport, which is mediated by BCRP, may be inhibited by potential inhibitors in SMF. There are potential interactions of these main effective components of SMF at the cellular and vesicular levels that are mediated by BCRP. The interplay of these bioactive components based on BCRP may be an important compatibility mechanism in SMF.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Vesículas Transportadoras/efeitos dos fármacos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/metabolismo , Transporte Biológico , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/metabolismo , Células LLC-PK1 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Suínos , Vesículas Transportadoras/genética , Vesículas Transportadoras/metabolismo
15.
Front Pharmacol ; 10: 1111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611795

RESUMO

Background: Oleanolic acid (OA) and its isomer ursolic acid (UA) have recently emerged as research foci based on their biologic activities. We previously demonstrated that UA can inhibit the activities of UGT1A3 and UGT1A4, and OA inhibits UGT1A3 activity in liver microsomes. However, whether OA and UA affect the expression of UGT1As in HepG2 cells and the underlying regulatory mechanism remain unclear. Purpose: The present study aimed to explore the effect of OA and UA on the expression of UGT1As in HepG2 cells and the regulatory mechanisms on UGT1A1 based on the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) signaling pathways. Methods: We analyzed the effect of OA and UA on UGT1A expression and on the PXR/CAR regulatory pathway in HepG2 cells, hPXR-silenced HepG2 cells, and hCAR-silenced HepG2 cells by Q-PCR, Western blotting, and dual-luciferase reporter gene assays. Results: In HepG2 cells, OA and UA both significantly induced the expression of UGT1A1, UGT1A3, UGT1A4, and UGT1A9 and upregulated the expression of PXR. However, OA and UA did not affect CAR expression. A dual-luciferase reporter assay showed that OA and UA could markedly promote PXR-mediated UGT1A1 luciferase activity, whereas OA and UA did not affect CAR-mediated UGT1A1 luciferase activity. In hPXR-silenced HepG2 cells, OA and UA did not elevate UGT1A1 activity compared to the control group. However, the expression of UGT1A1 in hCAR-silenced HepG2 cells was markedly elevated compared to the control group or with non-silenced HepG2 cells treated with OA (10, 20, and 40 µM) or UA (10, 20, and 40 µM). Conclusions: OA and UA significantly induce the expression of UGT1A1, UGT1A3, UGT1A4, and UGT1A9 in HepG2 cells, and their induction on UGT1A1 is mediated by PXR activation, not CAR.

16.
Phytomedicine ; 59: 152916, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30978651

RESUMO

BACKGROUND: Shengmai Formula (SMF) is widely used to treat cardiovascular disease such as chronic heart disease, coronary atherosclerotic heart disease, viral myocarditis, and others. Our previous studies have shown that OATP1B1/1B3 mediates the interactions between ophiopogon D and ginsenoside Rb1/Rd, which are the major active components in SMF. The herb-drug interactions that involve sodium taurocholate co-transporting polypeptide (NTCP) have been drawing increasing amounts of attention. PURPOSE: The aim of the present study was to investigate the interactions of the major effective components in SMF mediated by NTCP. METHODS: By using NTCP-overexpressing HEK293T cells and liquid chromatograph-mass spectrometer (LC-MS) analytical methods, we investigated the impact of the four main effective fractions and the 12 main effective components in SMF on NTCP-mediated sodium taurocholate (TCNa) uptake. The interactions of these effective components in SMF mediated by NTCP were further studied. RESULTS: The main effective fractions, ginseng total saponins (GTS), ophiopogon total saponins (OTS), ophiopogon total flavonoids (OTF), and fructus schisandrae total lignans (STL), all exhibited a certain inhibitory effect on the uptake of TCNa. Among the 12 main effective components, only ginsenoside Rg1, ophiopogon D', and schizandrin A showed inhibition of TCNa uptake, with IC50 values of 50.49 ± 4.24 µM, 6.71 ± 0.70 µM, and 45.80 ± 3.10 µM, respectively. Additionally, we found that ginsenoside Re and schizandrin B could be transported by NTCP-overexpressing HEK293T cells, and that the uptake of ginsenoside Re was significantly inhibited by OTS, OTF, STL, ginsenoside Rg1, ophiopogon D', and schizandrin A. The uptake of schizandrin B was significantly inhibited by GTS, OTS, OTF, and ophiopogon D'. CONCLUSION: Ginsenoside Rg1, ophiopogon D', and schizandrin A are potential inhibitors of NTCP and may interact with clinical drugs mediated by NTCP. Ginsenoside Re and schizandrin B are also potential substrates of NTCP, and their uptake mediated by NTCP was inhibited by the other components in SMF. The interaction of complex components based on NTCP may be one of the important compatibility mechanisms in SMF.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Cromatografia Líquida , Combinação de Medicamentos , Células HEK293 , Humanos , Espectrometria de Massas
17.
Biochem Pharmacol ; 159: 32-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414935

RESUMO

Nuclear receptors pregnane X receptor (PXR; NR1I2) and constitutive androstane receptor (CAR; NR1I3) play a vital role in regulating CYP3A4. Our previous studies have demonstrated that panaxytriol (PXT) upregulates the expression of CYP3A4 via the PXR regulatory pathway. This study aimed to explore how CAR mediates the regulation of CYP3A4 in the presence of PXT using HepG2 cell, hCAR-overexpressing HepG2 cell and hCAR-silenced HepG2 cell models. In HepG2 cells, PXT induced the expression of CYP3A4 in a concentration-dependent manner (10-80 µM) and the high concentration of PXT (80 µM) upregulated the expression of CAR. The concentrations of PXT (10-40 µM) had no impact on the expression of CAR, but could significantly induce the expression of CYP2B6 target gene by activating CAR. The dual-luciferase reporter gene assay also showed that CAR-mediated CYP3A4 luciferase activity can be promoted by 80 µM of PXT (1.54-fold), while 5, 10, 20, and 40 µM of PXT had no influence on CAR-mediated CYP3A4 luciferase activity. In hCAR-overexpressing HepG2 cells, PXT concentrations (10-40 µM) that significantly induced PXR and CYP3A4 in HepG2 cells had no impact on the expression of CYP3A4, CAR and PXR, whereas a high concentration of PXT (80 µM) could weakly induce the mRNA and protein levels of CAR and CYP3A4. Moreover, the expression of PXR and CYP3A4 in hCAR-silenced HepG2 cells was markedly elevated compared with the blank control or with normal HepG2 cells treated with 10-80 µM of PXT. In conclusion, CAR significantly weakens the ability of PXT to induce CYP3A4 expression by repressing the activation of PXR. There may be a cross-talk mechanism between PXR and CAR on the regulation of CYP3A4 in the presence of PXT. Additionally, a high concentration of PXT (80 µM) induced CYP3A4 via the CAR regulatory pathway.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Enedi-Inos/farmacocinética , Álcoois Graxos/farmacocinética , Receptor de Pregnano X/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor Constitutivo de Androstano , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Células Hep G2 , Humanos , Receptor de Pregnano X/genética , RNA Mensageiro , Receptores Citoplasmáticos e Nucleares/genética
18.
Sci Rep ; 8(1): 18063, 2018 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-30584236

RESUMO

Glibenclamide and glipizide show large substantial inter-individual variation in clinical efficacy, which may be resulted from the genetic differences of metabolic enzymes and transporters in individuals. This study purposed to investigate the effect of OATP1B3 and CYP2C9 genetic polymorphisms on the transport and metabolism of glibenclamide and glipizide in human. An LC-MS method was used to determine the uptake of glibenclamide and glipizide in OATP1B3, OATP1B3 (344T > G) and OATP1B3 (699G > A)-HEK293T cells and their metabolism in CYP2C9*1, *2 and *3 recombinase system. Glibenclamide can be taken in OATP1B3 (wild-type), OATP1B3 (344T > G) and OATP1B3 (699G > A)-HEK293T cells with the Vmax values of 44.91 ± 7.97, 46.08 ± 8.69, and 37.31 ± 5.04 pmol/min/mg, while glipizide was taken in with Vmax of 16.50 ± 3.64, 16.87 ± 4.23, and 13.42 ± 2.79 pmol/min/mg, respectively. The internal clearance of glibenclamide and glipizide in OATP1B3 (699G > A) was less than that in wild-type. Glibenclamide can be metabolized in CYP2C9*1, *2 and *3 recombinase system with the Vmax values of 1.58 ± 0.71, 0.69 ± 0.25, and 0.41 ± 0.13 nmol/min/mg protein, while glipizide was metabolized with Vmax of 8.82 ± 2.78, 5.99 ± 1.95, and 2.87 ± 1.03 nmol/min/mg protein, respectively. The internal clearance of glibenclamide and glipizide in CYP2C9*2 and *3 was markedly reduced compared to that in CYP2C9*1. These results collectively demonstrate that OATP1B3 (699G > A) and CYP2C9*2 and *3 have a significant influence on the transport and metabolism of glibenclamide and glipizide.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Glipizida/metabolismo , Glibureto/metabolismo , Hipoglicemiantes/metabolismo , Polimorfismo de Nucleotídeo Único , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Citocromo P-450 CYP2C9/genética , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética
19.
Clin Breast Cancer ; 18(3): e329-e333, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29033240

RESUMO

INTRODUCTION: The purpose of this study was to investigate the impact of single nucleotide polymorphisms (SNPs) in the acylphosphatase 2 gene and the SNP-SNP interactions on breast cancer (BC) risk in Chinese Han women. PATIENTS AND METHODS: A logistic regression model was used to examine the association between SNPs and BC risk. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Generalized multifactor dimensionality reduction was employed to analyze the SNP-SNP interaction. RESULTS: Logistic regression analysis showed that BC risk was significantly higher in carriers with the rs1682111-A allele than those with the TT genotype (TA + AA vs. TT; adjusted OR, 1.47; 95% CI, 1.21-1.92). In addition, we also found that BC risk was significantly higher in carriers with the rs10439478-C allele than those with the AA genotype (AC + CC vs. AA); adjusted OR, 1.67; 95% CI, 1.29-2.11. We found a significant 2-locus model (P = .0010) involving rs1682111 and rs10439478; the cross-validation consistency of this model was 10 of 10, and the testing accuracy was 60.11%. Participants with the TA or AA of rs1682111 and the AC or CC of rs10439478 genotype have the highest BC risk, compared with subjects with the TT of rs1682111 and the AA of rs10439478 genotype (OR, 2.52; 95% CI, 1.67-3.44), after covariate adjustment for gender, age, age at menarche, number of children, and body mass index. CONCLUSIONS: Minor allele of rs1682111 and rs10439478 and its interaction were associated with increased BC risk.


Assuntos
Hidrolases Anidrido Ácido/genética , Povo Asiático/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença , Idoso , Alelos , Estudos de Casos e Controles , China , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
20.
Biochem Biophys Res Commun ; 478(2): 710-5, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498029

RESUMO

Calotropin (M11), an active compound isolated from Asclepias curasavica L., was found to exert strong inhibitory and pro-apoptotic activity specifically against cisplatin-induced resistant non-small cell lung cancer (NSCLC) cells (A549/CDDP). Molecular mechanism study revealed that M11 induced cell cycle arrest at the G2/M phase through down-regulating cyclins, CDK1, CDK2 and up-regulating p53 and p21. Furthermore, M11 accelerated apoptosis through the mitochondrial apoptotic pathway which was accompanied by increase Bax/Bcl-2 ratio, decrease in mitochondrial membrane potential, increase in reactive oxygen species production, activations of caspases 3 and 9 as well as cleavage of poly ADP-ribose polymerase (PARP). The activation and phosphorylation of JNK was also found to be involved in M11-induced apoptosis, and SP610025 (specific JNK inhibitor) partially prevented apoptosis induced by M11. In contrast, all of the effects that M11 induce cell cycle arrest and apoptosis in A549/CDDP cells were not significant in A549 cells. Drugs with higher sensitivity against resistant tumor cells than the parent cells are rather rare. Results of this study supported the potential application of M11 on the non-small lung cancer (NSCLC) with cisplatin resistance.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Asclepias/química , Cardenolídeos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células A549 , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/genética , Proteína Quinase CDC2 , Cardenolídeos/isolamento & purificação , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Cisplatino/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/agonistas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Extratos Vegetais/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/agonistas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/agonistas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/agonistas , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...